Моя статья о работе энергетических систем будет полезной тем, кто ходит на семинары инструкторов тренажёрного зала или групповых программ. Многие эту тему не понимают или понимают неправильно. Ниже я вкратце попытался разъяснить принцип включения различных систем в энергообеспечение физических нагрузок.

Д.А.Жабкин
РАБОТА ЭНЕРГЕТИЧЕСКИХ СИСТЕМ ОРГАНИЗМА ПРИ АЭРОБНЫХ ФИЗИЧЕСКИХ НАГРУЗКАХ


Общая характеристика энергетических систем организма

Для любого физиологического процесса в организме, требуется энергия. При мышечной деятельности происходит процесс преобразования химической энергии в механическую работу. Универсальным источником энергии в живом организме является молекула АТФ. Под действием фермента Ca 2+ -АТФ-азы АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты, и превращается в АДФ, при этом высвобождается энергия.

АТФ + H 2 O → АДФ + H 3 PO 4 + 7,3 ккал (или 30 кДж)

Запас молекул АТФ в мышце ограничен (около 5 ммоль*кг-1 сырой массы ткани), что может обеспечить выполнение интенсивной работы в течение очень короткого времени (0,5-1,5 секунды или 3-4 одиночных сокращения максимальной силы). Поэтому расход энергии при работе мышцы требует постоянного его восполнения.

Дальнейшая мышечная работа происходит благодаря быстрому ресинтезу АТФ из продуктов её распада и такого количества энергии, которое выделилось при распаде:

АДФ + H 3 PO 4 + 7,3 ккал → АТФ

Мышца имеет 3 основных источника воспроизводства энергии:

1. Богатые энергией фосфатосодержащие вещества, которые присутствуют в тканях (АДФ, креатинфосфат);

2. Богатые энергией фосфатосодержащие вещества, которые образуются в процессе катаболизма гликогена, жирных кислот и других энергетических субстратов (дифосфоглицериновая кислота, фосфопировиноградная кислота и др.);

3. Энергия протонного градиента на мембране митохондрий, образующаяся в результате окисления различных веществ.

В зависимости от того, с помощью какого биохимического процесса поставляется энергия для получения молекул АТФ, выделяют 4 механизма ресинтеза АТФ в тканях или энергетические системы организма.

Для того, чтобы понять основные отличия энергетических систем, пользуются следующими характеристиками:

Ёмкость энергетической системы – это количество АТФ, способное образоваться за счёт данной системы.

Мощность энергетической системы – это количество АТФ, производимое системой за единицу времени.

Скорость развёртывания – время достижения максимальной мощности системы от начала работы.
Метаболическая эффективность – та часть энергии, которая накапливается в макроэргических связях АТФ. Она определяет экономичность выполняемой работы и оценивается коэффициентом полезного действия.

Таблица 1. Общая характеристика энергетических систем

система мощность, дж*кг*мин -1 максимальная мощность ёмкость, кДж*кг -1 субстраты основное ограничение существенная роль время восстановления
Фосфогенная 3770 6-12 секунд, Время развёртывания: 0,5-0,7 сек 630 АТФ, КФ содержание КФ интенсивная кратковременная работа 2-30 сек 40-60 мин
Лактатная 2500 60-180 секунд Время развёртывания: через 20-40 сек 1050 глюкоза, гликоген накопление молочной кислоты кратковременная интенсивная работа от 3 сек до 3-х минут 2-5 час
Аэробная 1250 6-10 минут. Время развёртывания: через 2-3 мин глюкоза, гликоген количество гликогена, скорость доставки О 2 5-24 час
жирные кислоты скорость доставки О 2 Сутки, несколько суток

Данные в таблице 1 получены путём измерения данных показателей у высококвалифицированных спортсменов. У нетренированных людей данные значения ниже.

Теперь остановимся поподробнее на отдельных энергетических системах.

Креатинфосфатная (фосфогенная, алактатная) система

АТФ в этой системе образуется в результате реакции Ломана, которая происходит в присутствии фермента креатинфосфаткиназы.

АДФ + КреатинФосфат → АТФ + креатин

Запасы креатинфосфата в волокне в 3-4 раза выше, чем АТФ. Но этого количества хватает для использования его в качестве источника энергии только на начальном этапе работы мышцы в первую минуту, до момента активизации других более мощных источников. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Эта система определяет алактатную работоспособность мышц.

Максимальная алактатная мощность зависит от:

1. концентрации и активности фермента креатинфосфаткиназа (переносящего фосфатную группу с креатинфостфата на АДФ).

2. концентрации креатинфосфата.

Длительность удержания максимальной алактатной мощности составляет 6-12 секунд.
Алактатная емкость зависит от запасов креатинфосфата в мышце.

Эффективность креатинфосфаткиназной реакции очень велика (76%), так как реакция протекает непосредственно между двумя веществами на миофибриллах.

Лактатная (гликолитическая, лактацидная) система

Гликолиз – это процесс распада одной молекулы глюкозы на две молекулы молочной кислоты с выделением энергии, достаточной для фосфорилирования двух молекул АТФ, протекает в саркоплазме под воздействием 10 ферментов.

C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ → 2C 3 H 6 O 3 + 2АТФ + 2H 2 O

Гликогенолиз – это процесс распада гликогена.

N + 3H 3 PO 4 + 3АДФ → 2C 3 H 6 O 3 + n-1 + 3АТФ + 2H 2 O

Для работы этой системы используются в основном внутримышечные запасы гликогена, а также глюкоза, поступающая из крови.

Гликолиз протекает без потребления кислорода и способен быстро восстанавливать запасы АТФ в мышце. Достигает максимума через 30-40 секунд интенсивной работы.

Эта система определяет лактатную работоспособность мышц.

Максимальная лактатная мощность определяется главным образом концентрацией и активностью ключевых ферментов гликолиза, которые зависят от:

1. устойчивости ферментов гликолиза к повышению кислотности среды, которая ингибирует их активность.

2. устойчивости кислотно-щелочного равновесия внутренней среды мышц, в условиях усиленной выработки молочной кислоты.

Время удержания максимальной мощности данного метаболического процесса составляет 60-180 секунд.

Гликолитическая емкость определяется главным образом запасами гликогена в мышцах, гликоген печени для процессов гликолиза не обладает достаточной мобильностью.

Метаболическая эффективность гликолиза оценивается значениями КПД порядка 0,35-0,52. Это означает, что почти половина всей выделяемой энергии превращается в тепло и не может быть использована в работе.

Умеренный сдвиг pH в кислую сторону активирует работу ферментов дыхательного цикла в митохондриях и усиливает аэробное энергообразование.

Значительное накопление молочной кислоты, появление избыточного СО 2 , изменение рН и гипервентиляция лёгких, отражающие усиление гликолиза в мышцах, обнаруживаются при увеличении интенсивности нагрузки более 50% максимальной аэробной мощности. Этот уровень нагрузки обозначается, как порог анаэробного обмена (ПАНО). Чем раньше он будет достигнут, тем быстрее вступит в действие гликолиз, сопровождающийся накоплением молочной кислоты и последующим развитием утомления работающих мышц.

Величина ПАНО является важным показателем эффективности энергообразования в мышцах, роста степени тренированности, который широко используется при биохимическом контроле функционального состояния спортсмена. С ростом степени тренированности на выносливость ПАНО увеличивается, т.е. наступает при более интенсивной работе.

Миокиназная реакция

«Аварийный» путь ресинтеза АТФ:

АДФ + АДФ → АТФ + АМФ

Происходит в мышцах при значительном увеличении концентрации АДФ в саркоплазме. Такая ситуация возникает при выраженном мышечном утомлении, когда другие пути ресинтеза АТФ уже не справляются.

Эта реакция так же обратима и используется для поддержания постоянного уровня АТФ в мышцах.

Аэробная (кислородная, окислительная) система.

В обычных условиях аэробный механизм ресинтеза АТФ обеспечивает около 90% общего количества АТФ, ресинтезируемой в организме.

Окисление протекает в митохондриях под воздействием специальных ферментов и требует затрат кислорода, а соответственно и времени на его доставку. Такие процессы называются аэробными. Окисление происходит в несколько этапов, сначала идет гликолиз (см. выше), но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле лимонной кислоты до углекислого газа и воды, давая энергию для производства еще 36 молекул АТФ.

C 6 H 12 O 6 + 6O 2 + 38АДФ + 38H 3 PO 4 → 6CO 2 + 44H 2 О + 38АТФ

Итого распад глюкозы по аэробному пути дает энергию для восстановления 38 молекул АТФ. Т.е. окисление в 19 раз эффективнее гликолиза. Если во время гликолиза организм усваивает в виде АТФ лишь 3% энергии, заложенной в молекуле глюкозы, то при аэробном окислении этот показатель равен 55% (включая те самые 3%). К тому же аэробное окисление может использовать более энергоемкие субстраты, такие как жиры, которые дают в 2 раза больше энергии, чем то же количество углеводов.

Субстратами окисления являются любые органические вещества: белки, жиры, углеводы. Долевое участие будет зависеть от характера работы:

Эта система определяет аэробную работоспособность мышц.

Максимальная аэробная мощность зависит главным образом от:

1. плотности митохондрий в мышечных волокнах;

2. концентрации и активности окислительных ферментов;

3. скорости поступления кислорода вглубь волокна.

Объем кислорода доступного для окислительных реакций лимитируется:

1. состоянием кардио-респираторной системы;

2. капилляризация мышц;

3. концентрация миоглобина;

4. диаметр мышечного волокна (чем меньше диаметр волокна, тем лучше оно снабжается кислородом и тем выше его относительная аэробная мощность).

Показатель количества кислорода, усваиваемого единицей массы тела за единицу времени – МПК (максимальное потребление кислорода).

Скорость производства АТФ за счет окисления достигает максимальных значений на 2-3-й минуте работы, что связано с необходимостью развертывания множества процессов, обеспечивающих доставку кислорода к митохондриям. Время удержания максимальной аэробной мощности составляет примерно 6 минут, в дальнейшем аэробная мощность снижается по причине усталости всех активно работающих систем организма.

Аэробная ёмкость очень высокая, т.к. для окисления используются любые органические вещества.
Метаболическая эффективность этого механизма – около 50%. Она определяется по ПАНО: у нетренированных людей ПАНО наступает при потреблении кислорода примерно 50% от МПК, а у высокотренированных на выносливость – при 80-90% от МПК.

Общая характеристика аэробных физических нагрузок

В спортивный практике к упражнениям аэробного характера относят длительные физические упражнения, где относительный вклад аэробного процесса в затратах энергии превышает 70%.

К аэробным циклическим упражнениям (по Я.М.Коцу, 1986) относятся:

1. упражнения максимальной аэробной мощности (3-10 минут);

2. упражнения близкой к максимальной аэробной мощности (10-30 минут);

3. упражнения субмаксимальной аэробной мощности (30-80 минут);

4. упражнения средней аэробной мощности (80-120 минут);

5. упражнения малой аэробной мощности (более 120 минут).

Аэробный механизм является основным при таких видах спорта, как: бег на дистанции 5-25 км, велогонки, плавание на 800-1500 м, бег на коньках на 5-10 км и др.

Ёмкость аэробного механизма, которая в значительной степени определяется запасами гликогена в скелетных мышцах и печени, а также уровнем утилизации кислорода мышцами, существенно повышается уже в течение 1,5-2 месяцев тренировки на выносливость.

Мощность аэробного механизма, которая зависит от МПК и активности окислительных ферментов, также увеличивается в процессе адаптации к мышечной деятельности через 2-3 месяца тренировок.
Аэробная направленность физических нагрузок происходит, как правило, в зоне умеренной мощности. При этом упражнения выполняются при максимуме аэробного производства энергии.

Кислородный запрос может достигать 500-1500 л, кислородный долг не превышает 5 л (до 10%). Содержание молочной кислоты в крови составляет 0,6-0,8 г*л-1. В ходе работы она может извлекаться тканями и аэробно окисляться в них.

Вследствие усиленного использования запасов гликогена в печени, содержание глюкозы в крови становится ниже 0,8 г*л-1. В моче в значительном количестве появляются продукты распада белков. Отмечается потеря организмом воды и минеральных солей.

Основными упражнениями для развития аэробных процессов энергообеспечения будут физические нагрузки, относящиеся к зоне большой и умеренной мощности с интенсивностью работы на уровне ПАНО и 100% МПК.

Работа энергетических систем во время аэробной физической нагрузки

Для большей вариабельности рассмотрим несколько вариантов аэробной физической нагрузки.
При беге на длинные дистанции (5 и 10 км) аэробное окисление углеводов является основным механизмом энергообеспечения работы, так как на его долю приходится до 87% общих затрат энергии на дистанции 5 км и 97% на дистанции 10 км.

Вклад анаэробных источников на этих дистанциях также достаточно большой. Он может достигать 15% общих затрат энергии и играет важную роль при финишном ускорении, приносящем победу при беге на длинные дистанции.

Наиболее значительным фактором, влияющим на выносливость, является кислородное снабжение работающих мышц, поскольку потребление кислорода во время бега поддерживает максимальную скорость окисления углеводов. Порог анаэробного обмена у стайеров при работе достигается при 75-90% МПК.

При марафонском беге затраты энергии восполняются исключительно за счёт аэробного процесса. Погашение этих затрат невозможно только за счёт окисления углеводов из-за недостаточности запасов гликогена в работающих мышцах спортсмена, поэтому значительная часть энергии образуется за счёт окисления жиров, на долю которых может приходится от 10 до 50% общих затрат энергии.

Вклад жиров на длинных и сверхдлинных дистанциях у высокотренированных бегунов с большими запасами гликогена в работающих мышцах составляет 12-20%, у нетренированных бегунов – более 80%. Всего на дистанции марафонского бега окисляется около 300 г жиров.

Использование жиров в качестве источника энергии менее эффективно по сравнению с окислением углеводов, так как происходит с более низкой скоростью и с большим потреблением кислорода.

Рис 2. Механизмы энергообеспечения бега на 10 000 м и марафонского бега (пунктирная черта показывает момент исчерпания запасов гликогена)

При длительной работе наряду с увеличением использования в энергетическом обмене жиров может происходить новообразование углеводов из веществ неуглеводной природы (глюконеогенез).
Основным субстратом глюконеогенеза являются аминокислоты, часть которых накапливается в мышце при работе в результате распада тканевых белков.

Рассмотрим, как включаются в работу энергетические системы во время аэробных физических нагрузок.

Таблица 2. Вклад различных источников энергии в обеспечение ресинтеза АТФ при беге в аэробном режиме работы (в %).

Дистанция, м Креатинфосфат Анаэробное окисление гликогена мышц Аэробное окисление гликогена мышц Глюкоза крови (гликоген печени) Жирные кислоты
1500 Минимальный 25 75 - -
5000 Минимальный 12,5 87,5 - -
10000 Минимальный 3 97 - -
Марафон - - 75 5 20
Супермарафон (84 км) - - 35 5 60
24-часовой забег - - 10 2 88

При переходе из состояния покоя к мышечной деятельности потребности в кислороде возрастает в несколько раз, но сразу она не может быть удовлетворена. Необходимо время, чтобы усилилась деятельность кардиореспираторной системы, чтобы кровь, обогащённая кислородом смогла дойти до работающих мышц. По мере усиления активности работы этих систем постепенно увеличивается потребление кислорода в работающих мышцах. Скорость потребления кислорода увеличивается до тех пор, пока не наступит истинное устойчивое состояние метаболических процессов, при котором потребление кислорода в данный момент времени точно соответствует потребности организма в нём (кислородному запросу).

До этого момента потребность организма в энергии обеспечивается большей частью за счёт работы анаэробных энергетических систем. Как мы уже отмечали выше, скорость развёртывания креатинфосфатной системы до полной мощности – доли секунды, лактатной – около половины минуты. В зависимости от того, какой кислородный запрос работы имеет нагрузка, кислородный дефицит на начальном её этапе восполняется за счёт разного участия анаэробных систем, но в любом случае развёртывания этих систем на полную мощность при нагрузках аэробного характера не требуется. В результате происходит накопление в организме недоокисленных продуктов анаэробного распада.

Рис 3. Кислородный приход, кислородный дефицит и кислородный долг при аэробной работе (а) лёгкой, (б) тяжёлой интенсивности. 1 – быстрый, 2 – медленный компоненты кислородного долга.

При работе в устойчивом состоянии часть анаэробных метаболитов может окисляться за счёт усиления аэробных реакций в процессе работы, а другая их часть устраняется после работы.

При выполнении работы с уровнем запроса около 50% МПК прирост концентрации молочной кислоты невелик (до 0,4-0,5 г/л), а при выполнении продолжительных нагрузок с уровнем запроса 50-85% МПК, возрастает до 1-1,5 г/л. Концентрация молочной кислоты значительно возрастает в первые 2-10 минут работы, а затем либо остаётся на прежнем уровне, либо снижается. То есть максимальная концентрация молочной кислоты в крови наблюдается до тех пор, пока не установилось устойчивое состояние, создающее условия для аэробного её окисления.

Для восстановления энергетических источников и окисления недоокисленных продуктов требуется дополнительное количество кислорода, поэтому некоторое время после окончания работы потребление его продолжает оставаться повышенным по сравнению с уровнем покоя. Этот излишек потребления кислорода в период восстановления получил название «кислородный долг».

Кислородный долг всегда больше кислородного дефицита. Чем больше интенсивность и продолжительность работы, тем кислородный долг выше.

После работы в устойчивом состоянии кислородный долг наполовину восполняется уже за 30 секунд, а полностью через 3-5 минут. После интенсивной работы «погашение» долга происходит в две фазы.

Быстрый (алактатный) компонент кислородного долга включает то количество кислорода, которое необходимо для ресинтеза АТФ и креатинфосфота. Он характеризует вклад креатинфосфатной энергетической системы в обеспечении выполненной работы.

Медленный (лактатный) компонент кислородного долга включает то количество кислорода, которое необходимо для окисления образовавшейся молочной кислоты при выполнении работы. Его величина характеризует участие лактатной энергетической системы, а при длительной работе – и других процессов, долю которых оценить весьма затруднительно. Медленный компонент устраняется наполовину за 15-25 минут, а полностью – за 1,5-2 часа.

Подводя итог, хочется отметить следующее:

Во время аэробной физической нагрузки работают все энергетические системы организма, но подавляющую роль играет аэробная система;

Все системы начинают работать одновременно с началом нагрузки, но за счёт разной скорости развёртывания процессов энергообразования, аэробная система полностью обеспечивает кислородный запрос не сразу, и на начальном этапе (несколько минут) кислородный приход компенсируют анаэробные энергетические системы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности – Киев: Олимпийская литература, 2000
2. Граевская Н.Д., Долматова Т.И. Спортивная медицина: Курс лекций и практические занятия. В 2х частях. – М.: Советский спорт, 2004
3. Ким Н.К., Дьяконов М.Б. Фитнес. Учебник – М.: Советский спорт, 2006
4. Макарова Г.А. Медицинский справочник тренера – М.: Советский спорт, 2004
5. Руненко С.Д. Фитнес: мифы, иллюзии, реальность – М.: Советский спорт, 2005
6. Протасенко В.А. Думай! Или "Супертренинг" без заблуждений, - журнал «Мускуляр», 2001
7. Хоули Э., Дон Френкс Б. Руководство инструктора оздоровительного фитнеса – Киев. Олимпийская литература, 2004

Общая характеристика аэробной системы энергообеспечения

Аэробная система энергообеспечения значительно уступает алактатной и лактатной по мощности энергопродукции, скорости включения в обеспечение мышечной деятельности, однако многократно превосходит по ёмкости и экономичности (табл. 1).

Таблица № 1. Энергообеспечение мышечной работы

Источники Пути Образования Время активации до максимального уровня Срок действия Продолжительность максимального выделения энергии
Алактатные анаэробные АТФ, креатинфосфат 0 До 30 с До 10 с
Лактатные анаэробные Гликолиз с образованием лактата 15 – 20 с От 15 – 20 с до 6 – 6 мин От 30 с до 1 мин 30 с
Аэробные Окисление углеводов и жиров кислородом воздуха 90 – 180 с До нескольких часов 2 – 5 мин и более

Особенностью аэробной системы является то, что образование АТФ в клеточных органелах-митохондриях, находящихся в мышечной ткани происходит при участии кислорода, доставляемого кислородтранспортной системой. Это предопределяет высокую экономичность аэробной системы, а достаточно большие запасы гликогена в мышечной ткани и печени, а также практически неограниченные запасы липидов – её ёмкость.

В наиболее упрощённом виде деятельность аэробной системы энергообеспечения осуществляется следующим образом. На первом этапе в результате сложных процессов происходит преобразование как гликогена, так и свободных жирных кислот (СЖК) в ацетил-кофермент А (ацетил-КоА) – активную форму уксусной кислоты, что обеспечивает протекание всех последующих процессов энергообразования по единой схеме. Однако до момента образования ацетил-КоА окисление гликогена и СЖК происходит самостоятельно.

Все многочисленные химические реакции, происходящие в процессе аэробного ресинтеза АТФ, можно разделить на три типа: 1 – аэробный гликолиз; 2 – цикл Кребса, 3 - система транспорта электронов (рис. 7).

Рис. 7. Этапы реакций ресинтеза АТФ в аэробном процессе

Первым этапом реакций является аэробный гликолиз, в результате которого осуществляется расщепление гликогена с образованием СО2 и Н2О. Протекание аэробного гликолиза происходит по той же схеме, что и протекание рассмотренного выше анаэробного гликолиза. В обоих случаях в результате химических реакций гликоген преобразуется в глюкозу, а глюкоза – в пировиноградную кислоту с ресинтезом АТФ. В этих реакциях кислород не участвует. Присутствие кислорода обнаруживается в дальнейшем, когда при его участии пировиноградная кислота не преобразуется в молочную кислоту в молочную кислоту, а затем в лактат, что имеет место в процессе анаэробного гликолиза, а направляется в аэробную систему, конечными продуктами которой оказывается углекислый газ (СО2), выводимый из организма лёгкими, и вода (рис. 8)


Рис. 8. Схематическое протекание анаэробного и аэробного гликолиза

Расщепление 1 моля гликогена на 2 моля пировиноградной кислоты происходит с выделением энергии, достаточной для ресинтеза 3 молей АТФ: Энергия + 3АДФ + Фн → 3АТФ

Из образовавшейся в результате расщепления гликогена пировиноградной кислоты сразу выводится СО2, превращая её из трёхуглеродного соединения в двухуглеродное, которое сочетаясь с коферментом А, образует ацетил- КоА, который включается во второй этап аэробного образования АТФ – цикл лимонной кислоты или цикл Кребса.

В цикле Кребса протекает серия сложных химических реакций, в результате которых происходит окисление пировиноградной кислоты – выведение ионов водорода (Н+) и электронов (е-), которые в итоге попадают в систему транспорта кислорода и участвуют в реакциях ресинтеза АТФ на третьем этапе, образуя СО2, который диффундируется в кровь и переносится в лёгкие, из которых и выводится из организма. В самом цикле Кребса образуется только 2 моля АТФ (рис. 9).


Рис. 9. Схематическое изображение окисления углеродов в цикле Кребса

Третий этап протекает в цепи транспорта электронов (дыхательной цепи). Реакции, происходящие с участием коферментов, в общем виде сводятся к следующему. Ионы водорода и электроны, выделяемые в результате реакций, протекавших в цикле Кребса и в меньшей мере в процессе гликолиза, транспортируются к кислороду, чтобы в результате образовать воду. Одновременно выделяемая энергия в серии сопряжённых реакций используется для ресинтеза АТФ. Весь процесс, происходящий по цепи передачи электронов кислороду называется окислительным фосфорилированием. В процессах, происходящих в дыхательной цепи, потребляется около 90 % поступающего к клеткам кислорода и образуется наибольшее количество АТФ. В общей сложности окислительная система транспорта электронов обеспечивает образование 34 молекул АТФ из одной молекулы гликогена.

Усвоение и абсорбция углеводов в кровоток происходит в тонком кишечнике. В печени они превращаются в глюкозу, которая в свою очередь может быть превращена в гликоген и депонируется в мышцах и печени, а также используется различными органами и тканями в качестве источника энергии для поддержания деятельности. В организме здорового с достаточным уровнем физической подготовленности мужчины с массой тела 75 кг содержится 500 – 550 г углеводов в виде гликогена мышц (около 80 %), гликогена печени (примерно 16 – 17 %), глюкозы крови (3 – 4 %), что соответствует энергетическим запасам порядка 2000 – 2200 ккал.

Гликоген печени (90 – 100 г) используется для поддержания уровня глюкозы крови, необходимого для обеспечения нормальной жизнедеятельности различных тканей и органов. При продолжительной работе аэробного характера, приводящей к истощению запасов мышечного гликогена, часть гликогена печении может использоваться мышцами.

Следует учитывать, что гликогенные запасы мышц и печени могут существенно увеличиваться под влиянием тренировки и пищевых манипуляций, предусматривающих углеводное истощение и последующее углеводное насыщение. Под влиянием тренировки и специального питания концентрация гликогена в печени может увеличиться в 2 раза. Увеличение количества гликогена повышает его доступность и скорость утилизации при выполнении последующей мышечной работы.

При продолжительных физических нагрузках средней интенсивности образование глюкозы в печени возрастает в 2 – 3 раза по сравнению с образованием её в состоянии покоя. Напряжённая продолжительная работа может привести к 7 – 10-кратному увеличению образования глюкозы в печени по сравнению с данными, полученными в состоянии покоя.

Эффективность процесса энергообеспечения за счёт жировых запасов определяется скоростью протекания липолиза и скоростью кровотока в адипозной ткани, что обеспечивает интенсивную доставку свободных жирных кислот (СЖК) к мышечным клеткам. Если работа выполняется с интенсивностью 50 – 60 % VO2 max, отмечается максимальный кровоток в адипозной ткани, что способствует максимальному поступлению в кровь СЖК. Более интенсивная мышечная работа связана с интенсификацией мышечного кровотока при одновременном уменьшении кровоснабжения адипозной ткани и, следовательно, с ухудшением доставки СЖК в мышечную ткань.

Хотя в процессе мышечной деятельности липолиз разворачивается, однако уже на 30 – 40-й минутах работы средней интенсивности её энергообеспечения в равной мере осуществляется за счёт окисления как углеводов, так и липидов. Дальнейшее продолжение работы, приводящее к постепенному исчерпанию ограниченных углеводных ресурсов, связано с увеличением окисления СЖК; например, энергообеспечение второй половины марафонской дистанции в беге или шоссейных велогонках (более 100 км) преимущественно связано с использованием жиров.

Несмотря на то что использование энергии от окисления липидов имеет реальное значение для обеспечения выносливости только при продолжительной мышечной деятельности, начиная уже с первых минут работы с интенсивностью, превышающей 60 % VO2max, отмечается освобождение из триацилглицеридов СЖК, их поступление и окисление в сокращающихся мышцах. Через 30 – 40 мин после начала работы скорость потребления СЖК возрастает в 3 раза, а после 3 – 4 часов работы – в 5 – 6 раз.

Внутримышечная утилизация триглицеридов существенно возрастает под влиянием тренировки аэробной направленности. Эта адаптационная реакция проявляется как в быстроте развёртывания процесса образования энергии за счёт окисления СЖК, поступивших из трицеридов мышц, так и в возрастании их утилизации из мышечной ткани.

Не менее важным адаптационным эффектом тренированной мышечной ткани является повышение её способности к утилизации жировых запасов. Так, после 12-недельной тренировки аэробной направленности способность к утилизации триглицеридов в работающих мышцах резко возрастала и достигала 40 %.

Роль белков для ресинтеза АТФ не существенна. Однако углеродный каркас многих аминокислот может быть использован в качестве энергетического топлива в процессе окислительного метаболизма, что проявляется при продолжительных нагрузках средней интенсивности, при которых вклад белкового метаболизма в энергопродукцию может достичь 5 – 6 % общей потребности в энергии.

Благодаря значительным запасам глюкозы и жиров в организме и неограниченной возможности потребления кислорода их атмосферного воздуха, аэробные процессы, обладая меньшей мощностью по сравнению с анаэробными, могут обеспечивать выполнение работы в течении длительного времени (т. е. их ёмкость очень велика при очень высокой экономичности). Исследования показывают, что, например в марафонском беге за счёт использования мышечного гликогена работа мышц продолжается в течении 80 мин. Определённое количество энергии может быть мобилизовано за счёт гликогена печени. В сумме это может обеспечить 75 % времени, необходимого для преодоления марафонской дистанции. Остальная энергия образуется в результате окисления жирных кислот. Однако скорость их диффузии из крови в мышцы ограничена, что лимитирует производство энергии за счёт этих кислот. Энергии, продуцируемой вследствие окисления СЖК, достаточно для поддержания интенсивности работы мышц на уровне 40 – 50 % VO2max, ВТО времы как сильнейшие марафонцы способны преодолевать дистанцию с интенсивностью, превышающей 80 – 90 % VO2max, что свидетельствует о высоком уровне адаптации аэробной системы энергообеспечения, позволяющем не только обеспечить оптимальное сочетание использования углеводов, жиров, отдельных аминокислот и метаболитов для производства энергии, но и экономное расходование гликогена.

Таким образом, вся совокупность реакций, обеспечивающих аэробное окисление гликогена, выглядит следующим образом. На первом этапе в результате аэробного гликолиза образуется пировиноградная кислота и ресинтезируется некоторое количество АТФ. На втором, в цикле Кребса, производится СО2, а ионы водорода (Н+) и электроны (е-) вводятся в систему транспорта электронов также с ресинтезом некоторого количества АТФ. И наконец, заключительный этап связан с образованием Н2О из Н+, е- и кислорода с высвобождением энергии, используемой для ресинтеза подавляющего количества АТФ. Жиры и белки, используемые в топлива для ресинтеза АТФ, также проходят через цикл Кребса и систему транспорта электронов (рис. 10).


Рис. 10. Схематическое изображение функционирования аэробной системы энергообеспечения

Лактатная система энергообеспечения.

В лактатной системе энергообеспечения ресинтез АТФ происходит за счёт расщепления глюкозы и гликогена при отсутствии кислорода. Этот процесс принято обозначать как анаэробный гликолиз. Анаэробный гликолиз является значительно более сложным химическим процессом по сравнению с механизмами расщепления фосфогенов в алактатной системе энергообеспечения. Он предусматривает протекание серии сложных последовательных реакций, в результате которых глюкоза и гликоген расщепляются до молочной кислоты, которая в серии сопряжённых реакций используется для ресинтеза АТФ (рис. 2).


Рис. 2. Схематическое изображение процесса анаэробного гликолиза

В результате расщепления 1 моля глюкозы образуется 2 моля АТФ, а при расщеплении 1 моля гликогена – 3 моля АТФ. Одновременно с высвобождением энергии в мышцах и жидкостях организма происходит образование пировиноградной кислоты, которая затем преобразуется в молочную кислоту. Молочная кислота быстро разлагается с образованием её соли – лактата.

Накопление молочной кислоты в результате интенсивной деятельности гликолитического механизма приводит к большому образованию лактата и ионов водорода (Н+) в мышцах. В результате, несмотря на действие буферных систем, постепенно снижается мышечный pH с 7,1 до 6,9 и даже до 6,5 – 6,4. Внутриклеточный pH, начиная с уровня 6,9 – 6,8 замедляет интенсивность гликолитической реакции восстановления запасов АТФ, а при pH 6,5 – 6,4 расщепление гликогена прекращается. Таким образом, именно повышение концентрации молочной кислоты в мышцах ограничивает расщепление гликогена в анаэробном гликолизе.

В отличие от алактатной системы энергообеспечения, мощность которой достигает максимальных показателей уже на первой секунде работы, процесс активизации гликолиза разворачивается значительно медленнее и достигает высоких величин энергопродукции только на 5 – 10 секундах работы. Мощность гликолитического процесса значительно уступает мощности креатинфосфокиназного механизма, однако является в несколко раз более высокой по сравнению с возможностями системы аэробного окисления. В частности, если уровень энергопродукции АТФ за счёт распада КФ составляет 9 – 10 ммоль/кг с.м.т./с (сырая масса ткани), то при подключении гликолиза объём производимой АТФ может увеличиться до 14 ммоль/кг с.м.т./с. За счёт использования обоих источников ресинтеза АТФ в течении 3-минутной интенсивной работы мышечная система человека способна вырабатывать около 370 ммоль/кг с.м.т. При этом на долю гликолиза приходится не менее 80 % общей продукции. Максимальная мощность лактатной анаэробной системы проявляется на 20 – 25-й секундах работы, а на 30 – 60-й секундах гликолитический путь ресинтеза АТФ является основным в энергообеспечении работы.

Ёмкость лактатной анаэробной системы обеспечивает её превалирующее участие в энергопродукции при выполнении работы продолжительность до 30 – 90 с. При более продолжительной работе роль гликолиза постепенно снижается, однако остаётся существенной и при более продолжительной работе – до 5 – 6 мин. Общее количество энергии, которое образуется за счёт гликолиза, наглядно может быть оценено и по показателям лактата крови после выполнения работы, требующей предельной мобилизации лактатной системы энергообеспечения. У нетренированных людей предельная концентрация лактата в крови составляет 11 – 12 ммоль/л. Под влиянием тренировки ёмкость лактатной системы резко возрастает и концентрация лактата в крови может достигать 25 – 30 ммоль/л и выше.

Максимальные величины энергообразования и лактата в крови у женщин на 30 – 40 % ниже по сравнению с мужчинами такой же спортивной специализации. Юные спортсмены по сравнению со взрослыми отличаются невысокими анаэробными возможностями. максимальная концентрация лактата в крови при предельных нагрузках анаэробного характера у них не превышает 10 ммоль/кг, что в 2 – 3 раза ниже, чем у взрослых спортсменов.

Таким образом, адаптационные реакции лактатной анаэробной системы могут протекать в различных направлениях. Одним из них является увеличение подвижности гликолитического процесса, что проявляется в значительно более быстром достижении его максимальной производительности (с 15 – 20 до 5 – 8 с). Вторая реакция связана с повышением мощности анаэробной гликолитической системы, что позволяет ей продуцировать значительно большее количество энергии в единицу времени. Третья реакция сводится к повышению ёмкости системы и, естественно общего объёма продуцируемой энергии, вследствие чего увеличивается продолжительность работы, преимущественно обеспечиваемая за счёт гликолиза.

Максимальное значение лактата и pH в артериальной крови в процессе соревнований по некоторым видам спорта представлены на рис. 3.


Рис.3. Максимальные значения лактата и pH в артериальной крови у спортсменов, специализирующихся в различных видах спорта: а – бег (400, 800 м); б – скоростной бег на коньках (500, 1000м); в – гребля (2000 м); г – плавание 100 м; д – бобслей; е – велогонки (100 км)
(Eindemann, Keul, 1977)

Они дают достаточно полное представление о роли лактатных анаэробных источников энергии для достижения высоких спортивных результатов разных видах спорта и об адаптационных резервах системы анаэробного гликолиза.

При выборе оптимальной продолжительности работы, обеспечивающей максимальную концентрацию лактата в мышцах, следует учитывать, что максимальное содержание лактата отмечается при использовании предельных нагрузок, продолжительность которых колеблется в пределах 1 – 6 мин. Увеличение продолжительности работы связано с уменьшением концентрации лактата в мышцах.

Для выбора оптимальной методики повышения анаэробных возможностей важно проследить особенности накопления лактата при прерывистой работе максимальной интенсивности. Например, одноминутные предельные нагрузки с четырёхминутными паузами приводят к постоянному увеличению лактата в крови (рис. 4) при одновременном снижениипоказателей кислотно-основного состояния (рис. 5).


Рис. 4. Изменение концентрации лактата в крови в процессе прерывистой максимальной нагрузки (одноминутные упражнения с интенсивностью 95 %, разделённые периодами отдыха длительностью 4 мин) (Hermansen, Stenswold, 1972)

Рис. 5. Изменение pH крови при прерывистом выполнении одноминутных нагрузок максимальной интенсивности (Hollman, Hettinger, 1980)

Аналогичный эффект отмечается и при выполнении 15 – 20-секундных упражнений максимальной мощности с паузами около 3 минут (рис. 6).


Рис. 6. Динамика биохимических изменений у спортсменов при повторном выполнении кратковременных упражнений максимальной мощности (Н. Волков и др., 2000)

Алактатная система энергообеспечения.

Эта система энергообеспечения является наименее сложной, отличается высокой мощностью освобождения энергии и кратковременностью действия. Образование энергии в этой системе происходит за счёт расщепления богатых энергией фосфатных соединений – аденозинтрифосфата (АТФ) и креатинфосфата (КФ). Энергия, образующаяся в результате распада АТФ, в полной мере включается в процесс энергообеспечения работы уже на первой секунде. Однако уже на второй секунде выполнение работы осуществляется за счёт креатинфосфата (КФ), депонированного в мышечных волокнах и содержащего богатые энергией фосфатные соединения. Расщепление этих соединений приводит к интенсивному высвобождению энергии. Конечными продуктами расщепления КФ являются креатин (Кр) и неорганический фосфат (Фн). Реакция стимулируется ферментом креатинкиназа и схематически выглядит следующим образом:


Энергия, высвобождаемая при распаде КФ, является доступной для процесса ресинтеза АТФ, поэтому за быстрым расщеплением АТФ в процессе мышечного сокращения незамедлительно следует его ресинтез из АДФ и Фн с привлечением энергии, высвобождаемой при расщеплении КФ:


Ещё одним механизмом алактатной системы энергообеспечения является так называемая миокиназная реакция, которая активизируется при значительном мышечном утомлении, когда скорость расщепления АТФ существенно превышает скорость её ресинтеза. Миокиназная реакция стимулируется ферментом миокиназа и заключается в переносе фосфатной группы с одной молекулы на другую и образованием АТФ и аденозинмонофосфата (АМФ):


Аденозинмонофосфат (АМФ), являющийся побочным продуктом миокиназной реакции, содержит последнюю фосфатную группу и в отличие от АТФ и АДФ не может быть использован в качестве источника энергии. Миокиназная реакция активизируется в условиях, когда в силу утомления другие пути ресинтеза АТФ исчерпали свои возможности.

Запасы КФ не могут быть восполнены в процессе выполнения работы. Для его ресинтеза может быть использована только энергия, высвобождаемая в результате распада АТФ, что оказывается возможным лишь в восстановительном периоде после окончания работы.

Алактатная система, отличаясь очень высокой скорость освобождения энергии, одновременно характеризуется крайне ограниченной ёмкостью. Уровень максимальной алактатной анаэробной мощности зависит от количества фосфатов (АТФ и КФ) в мышцах и скорости их использования. Под влиянием тренировки спринтерского характера показатели алактатной анаэробной мощности могут быть значительно повышены. Под влиянием специальной тренировки мощность алактатной анаэробной системы может быть увеличена на 40 -80 %. Например, спринтерская тренировка в течении 8 недель бегунов привела к увеличению содержания АТФ и КФ в скелетной мышце в состоянии покоя примерно на 10 %.

Под влиянием тренировки в мышцах не только увеличивается количество АТФ и Кф, но и существенно возрастает способность мышечной ткани к их расщеплению. Ещё одной адаптационной реакцией, определяющей мощность алактатной анаэробной системы, является ускорение ресинтеза фосфатов за счёт повышения активности ферментов, в частности креатинфосфокиназы и миокиназы.

Под влиянием тренировки существенно возрастают и показатели максимальной ёмкости алактатной анаэробной стстемы энергообеспечения. Ёмкость алактатной анаэробной системы под влиянием целенаправленной многолетней тренировки иожет возрастать в 2,5 раза. Это подтверждается показателями максимального алактатного О2-долга: у начинающих спортсменов он составляет 21,5 мл/кг, у спортсменов высокого класса может достигать 54,5 мл/кг.

Увеличение ёмкости алактатной энергетической системы проявляется и в продолжительности работы максимальной интенсивности. Так, у лиц не занимающихся спортом, максимальная мощность алактатного анаэробного процесса, достигнутая через 0,5 – 0,7 с после начала работы, может удерживаться не более 7 – 10 с, то у спортсменов высшего класса, специализирующихся в спринтерских дисциплинах, она может проявляться в течение 15 – 20 с. При этом большая продолжительность работы сопровождается и значительно большей её мощностью, что обусловливается высокой скоростью распада и ресинтеза высокоэнергетических фосфатов.

Концентрация АТФ и КФ у мужчин и женщин практически одинакова – около 4 ммоль/кг АТФ и 16 ммоль/кг КФ. Однако общее количество фосфогенов, которые могут использоваться при мышечной деятельности, у мужчин значительно больше, чем у женщин, что обусловлено большими различиями в общем объёме скелетной мускулатуры. Естественно, что у мужчин значительно больше ёмкость алактатной анаэробной системы энергообеспечения.

В заключении следует отметить, что лица с высоким уровнем алактатной анаэробной производительности, как правило, имеют низкие аэробные возможности, выносливость к длительной работе. Одновременно у бегунов на длинные дистанции алактатные анаэробные возможности не только не сравнимы с возможностями спринтеров, но и часто уступают показателям, регистрируемым у лиц, не занимающихся спортом.

Общая характеристика систем энергообеспечения мышечной деятельности

Энергия, как известно, представляет собой общую количественную меру, связывающую воедино все явления природы, разные формы движения материи. Из всех видов энергии, образующейся и использующейся в различных физических процессах(тепловая, механическая, химическая и др.)применительно к мышечной деятельности, основное внимание должно быть сконцентрировано на химической энергии организма, источником которой являются пищевые продукты и её преобразовании в механическую энергию двигательной деятельности человека.

Энергия, высвобождаемая во время расщепления пищевых продуктов, используется для производства аденозинтрифосфата (АТФ), который депонируется в мышечных клетках и является своеобразным топливом для производства механической энергии мышечного сокращения.

Энергию для мышечного сокращения даёт расщепление аденозинтрифосфата (АТФ) до аденозиндифосфата (АДФ) и неорганического фосфата (Ф). Количество АТФ в мышцах невелико и его достаточно для обеспечения высокоинтенсивной работы лишь в течении 1 – 2 с. Для продолжения работы необходим ресинтез АТФ, который производится за счёт энергоотдающих реакций трёх типов. Восполнение запасов АТФ в мышцах позволяет поддерживать постоянный уровень его концентрации, необходимый для полноценного мышечного сокращения.

Ресинтез АТФ обеспечивается как в анаэробных, так и в аэробных реакциях с привлечением в качестве энергетических источников запасов креатинфосфата (КФ) и АДФ, содержащихся в мышечных тканях, а также богатых энергией субстратов (гликоген мышц и печени, запасы липозной ткани и др.). Химические реакции, приводящие к обеспечению мышц энергией протекают в трёх энергетических системах: 1) анаэробной алактатной, 2) анаэробной лактатной (гликолитической), 3) аэробной.

Образование энергии в первых двух системах осуществляется в процессе химических реакций, не требующих наличия кислорода. Третья система предусматривает энергообеспечение мышечной деятельности в результате реакций окисления, протекающих с участием кислорода. Наиболее общие представления о последовательности включения и количественных соотношениях в энергообеспечении мышечной деятельности каждой из указанных систем приведены на рис. 1.

Возможности каждой из указанных энергетических систем определяются мощностью, т. е. скоростью освобождения энергии в метаболических процессах, и ёмкостью, которая определяется величиной и эффективностью использования субстратных фондов.


Рис. 1. Последовательность и количественные соотношения процессов энергообеспечения мышечной деятельности у квалифицированных спортсменов в различных энергетических системах (схема): 1 – алактатной; 2 – лактатной; 3 – аэробной

Снабжение сокращающихся мышц энергией происходит при химических превращениях, идущих без участия кислорода, - анаэробный гликолиз - и при участии его - окислительное (аэробное) фосфорилирование. Кислород требуется не только для аэробного фосфорилировання, но и для частичного окисления молочной кислоты (лактат) - конечного продукта анаэробного расщепления гликогена.

Наибольшее значение имеет окислительное фосфорилирование, так как оно позволяет более эффективно использовать энергию химических превращений в мышцах и тканях. Анаэробные процессы энергообразования включаются при недостатке кислорода как вспомогательный механизм. Таким образом, функция кислородного обмена заключается в образовании энергии, необходимой для различного рода физиологических процессов, в том числе в сократительной деятельности мышц.

Основные химические реакции энергетических процессов происходят в особой части клеток (митохондриях), куда поступает кислород. В митохондриях клеток образуется аденозинтрифосфорная кислота (АТФ), являющаяся универсальной формой накопления энергии в ее фосфорных связях. Трансформация химических реакций с участием АТФ в механическую работу осуществляется сократительным белковым материалом мышц - актином и миозином. Сложная белковая структура актомиозин под влиянием АТФ способна сокращаться, а последняя при этом распадается до АДФ и АМФ (аденозин-дифосфорная и аденозинмонофосфорная кислоты). Запасы АТФ в мышечной ткани ограничены, поэтому для выполнения значительной мышечной работы требуется постоянное восполнение запасов этого соединения.

Восстановление (ресинтез) АТФ происходит как за счет макроэргических соединений, содержащихся в мышце (креатинфосфат), так и за счет макроэргических соединений, образующихся в ней в процессе мышечной деятельности.

Креатинфосфат имеет большое значение в процессах мышечного сокращения, играя роль энергетического депо. При этом его депо пирующая способность энергии выше, чем у АТФ. Однако креатинфосфат не реагирует с сократительным веществом мышц (актомиози- ном), а вступает в реакцию лишь с АДФ.

Креатинкиназная реакция протекает чрезвычайно быстро, и она характерна для кратковременных интенсивных физических нагрузок

Ресинтез АТФ за счет макроэргических фосфорных соединений, образующихся в процессе мышечной деятельности, может осуществ ляться путем гликолитического и дыхательного фосфорилировання

Гликолитическое фосфорилирование, подобно креатинкиназной реакции, - анаэробный путь ресинтеза АТФ. В связи с тем, что углеводные запасы организма, особенно у верховых лошадей, достаточно велики, гликолиз может обеспечивать ресинтез АТФ длительное время.

Ресинтез АТФ гликолитическим фосфорилированием является преобладающим при мышечных нагрузках максимальной интенсивности, когда появляется резкое несоответствие между сильно возросшей потребностью организма в кислороде и ограниченными возможностями ее удовлетворения. Конечный продукт анаэробного распада углеводов - молочная кислота.

При максимальной активности мышц образуется избыток молочной кислоты, диффундирующей в кровь. После максимальной работы, например после быстрой скачки или бега, наблюдаются учащенное дыхание и усиленное по сравнению с состоянием покоя потребление кислорода. Повышенное количество кислорода, потребляемое в восстановительном периоде, называется кислородным долгом и расходуется на окисление в тканях печени и сердца некоторой части избытка молочной кислоты (до 1 / 4), образовавшегося в период максимальной мышечной активности. Остальная часть избытка молочной кислоты, накопившаяся в крови при быстром беге, снова превращается в печени в гликоген.

Важную роль в мышечной энергетике играют процессы окисления пировиноградной кислоты, являющейся предшественником молочной кислоты при анаэробном фосфорилировании. Большая часть пиро-виноградной кислоты является основой для аэробного расщепления углеводов и других окислительных реакций.

Обязательное условие аэробного окисления - хорошее снабжение организма кислородом. Такой путь ресинтеза АТФ характерен для нагрузок средней и умеренной интенсивности, когда потребность организма в кислороде может полностью удовлетворяться.

Большая часть аэробных окислительных превращений идет на обеспечение двигательной деятельности. При мышечной работе уровень потребления организмом кислорода возрастает во много раз. Скелетные мышцы при напряженной работе могут увеличивать потребление кислорода в 100 раз. Следовательно, доставка необходимого количества кислорода для обменных процессов в мышцах является решающим условием, обеспечивающим двигательную деятельность организма лошади.

В процессе энергетического обмена происходит потребление организмом кислорода и выделение углекислоты. Важное значение имеет соотношение выделенная углекислота: потребляемый кислород - так называемый дыхательный коэффициент, определенным образом отражающий характер обмена веществ. Дыхательный коэффициент имеет сложную динамику и во время работы претерпевает изменения. У лошадей при движении шагом он колеблется в пределах единицы, а при более интенсивном движении уменьшается вследствие истощения углеводов и постепенного вовлечения в обмен белков и жиров. Таким образом, дыхательный коэффициент указывает, какое энергетическое вещество окисляется. При окислении углеводов он равен единице, при окислении белков - 0,8, жиров - 0,7.

По количеству потребленного кислорода при определенном дыхательном коэффициенте можно рассчитать затраты калорий, необходимых для обеспечения той или иной работы.

Минимальный уровень обмена веществ при полном мышечном покое называется основным обменом. У лошадей основной обмен неодинаков и зависит от возраста, массы, породы и других факторов. Зная данные основного обмена и затраты при движении, можно определить общее количество энергии, расходуемой лошадью на разных аллюрах при прохождении той или иной дистанции (табл. 1).

Таблица 1. Расход энергии у верховых лошадей в килокалориях при работе под седлом при массе всадника 80 кг * (по Г. Г. Карлсену)

* (С учетом кислородного долга; в 1 ккал содержится 4,18 кДж. )

Затраты энергии при движении шагом у лошадей составляют 0,58-0,71 ккал на 1 кг/км. При переходе на движение рысью повышается расход энергии в единицу времени примерно в 2 раза, то есть пропорционально увеличению скорости движения. В то же время при расчете на единицу пути эти изменения незначительны.

Следует отметить, что величина потребления кислорода характеризует уровень окислительно-восстановительных процессов в организме, а мерой участия процессов анаэробного образования энергии при мышечной деятельности является кислородный долг. Сумма этих величин, то есть потребления кислорода во время работы и кислородного долга, составляет уровень кислородного запроса и является показателем энергозатрат организма

1. Анаэробный креатинфосфатный механизм.

В достижении высоких показателей, большое значение имеют факторы энергообеспечения мышечной деятельности. При мышечном сокращении непосредственным источником энергии является расщепление АТФ (аденозитрифосфорная кислота) при этом АТФ теряет одну энергетически богатую группу и превращается в аденезиндифосфорную (АДФ) и фосфорную кислоты. В мышечных клетках запас АТФ невелик. После потери АТФ, ее запасы должны немедленно восстановится. В случае недостатка кислорода, один из путей восстановления (ресинтеза) АТФ и АДФ связан с использованием креатинфосфата (КрФ), находящегося в мышечном волокне и имеющего фосфатную группу.

КрФ + АДФ = АТФ + креатин

Анаэрбный механизм ресинтеза АТФ может работать до тех пор, пока не будет исчерпан КрФ в мышечных волокнах. Уровень запаса КрФ повышается во время спринтерских тренировок. Креатинфосфатный механизм энергообепечения быстро исчерпывается, после чего энергообеспечение идет за счет других механизмов.

2.Анаэрбный гликолитический механизм.

Другой путь ресинтеза АТФ – гликолиз. Как и креатинфосфатный механизм, он анаэробный, и может быть источником энергообеспечения лишь недолго. При гликолизе АТФ обновляется за счет ферментативного расщепления глюкозы и гликогена до молочной кислоты. Сначала углеводы расщепляются до пировиноградной кислоты. Создающиеся при этом ферментативные группы переходят в АДФ которая превращается после этого в АТФ. Пировиноградная кислота вступает в реакцию и превращается в молочную кислоту. Интенсивное накопление и создание молочного долга, при одновременном исчерпании запасов гликогена – это основной фактор, который лимитирует мышечную деятельность и сопутствует развитию усталости.

3.Аэробный механизм.

В мышцах, обновление АТФ происходит при помощи кислорода. Аэробный механизм может обеспечивать менее интенсивный процесс работы, но более длительный. Организм спортсмена в это время находится в стойком состоянии – молочная кислота не накапливается и кислородный долг не создается. Окислительная система обеспечивает мышцы энергией с помощью процессов окисления жиров и углеводов кислородом из воздуха. Углеводы являются более выгодным источником энергии, в условиях недостаточного снабжения организма кислородом, потому что для их окисления необходимо меньшее количество кислорода, чем для окисления жиров. Например, при работе невысокой интенсивности (до 50% МПК) окисление происходит за счет окисления жиров. При более интенсивной работе, доля участия в энергообеспечении жиров – уменьшается, а углеводов – увеличивается. Белки тоже могут использоваться для энерготворения. Но преимущественно те, которые могут трансформироваться в глюкозу или другие продукты процесса окисления.

3. Мощность и емкость путей энергообеспечения работ

Возможности каждого из указанных энергетических механизмов, определяется мощностью (скоростью освобождения энергии в метаболических процессах), и объемности, которая определяется величиной достигаемых для использования субстрактых фондов.

Обеспечить действующие органы большим количеством энергии за минимальное время способны креатинофосфокиназная реакция и использование запасов АТФ тканей. В энергообеспечении работы максимальной интенсивности решающую роль играют анаэробные алактатные источники. Анаеробные гликотические источники связаны с запасами гликогена в мышцах, который расщепляется с созданием АТФ и КФ. Но в отличие от алактатных анаэробных источников, этот путь энерготворения имеет более замедленное действие, меньшую мощность, но более высокую выносливость. Аэробные источники энергообеспечения имеют меньшую мощность, но обеспечивают проведение работы на протяжении длительного времени, так как их емкость очень велика.

При нормальном питании в мышцах человека находится около 500гр. гликогена. Это основной резерв энергообеспечения мышечной деятельности. В жировой ткани (триглицериды) находятся большие запасы химической энергии, которая мобилизуется во время длительной работы. Однако для освобождения энергии триглицериды должны пройти сложный путь превращения в жирные кислоты, которые попадают в кровоток и используются в процессе аеробного метаболизма. В процессе освобождения энергии глюкоза содержащаяся в гликогене мышц и печени, или жирная кислота окисляется до СО2 и воды. Этот процесс называется аэробным метаболизмом, осуществляется в два этапа, и достигается при помощи серии последовательных превращений при участии большого количества ферментов. На первом этапе, после двенадцати последовательных реакций метаболизма глюкозы, создается пируват. На втором этапе, при достатке кислорода, пируват поступает в митохондрии и полностью окисляется до СО2 и воды. При недостатке кислорода, или его отсутствии, пируват превращается в молочную кислоту. Количество АТФ, которое получается в результате аэробного окисления и анаэробного гликолиза, разное. При полном окислении одной молекулы глюкозы до СО2 и воды, освобождается 39 молекул АТФ. При процессе гликолиза, при использовании 1 молекулы глюкозы создается всего 3 молекулы АТФ. В процессе анаэробного гликолиза, очень велика скорость создания АТФ, при этом освобождается большое количество энергии. Одновременно тратятся запасы гликогена. В результате анаэробного гликолиза создается молочная кислота и протоны.

Аэробные источники допускают окисление жиров и углеводов кислородом воздуха. Аэробные процессы проходят постепенно, их максимум достигается через несколько минут после начала процесса. Благодаря большим запасам глюкозы и жиров в организме и неограниченным возможностям потребления кислорода из атмосферного воздуха, аэробные источники, дают возможность выполнять работу на протяжении длительного времени. Имея высокую экономичность, их емкость очень велика. Основными источниками в энергообеспечении кратковременной высокоэффективной работы являются анаэробные алактатные источники. Немедленный ресинтез АТФ обеспечивается креатинфосфатом мышц. В мышцах человека имеется достаточное количество креатинфосфата для поддержания постоянного уровня АТФ в мышечных клетках на протяжении 5 – 8 сек. Используется креатинфосфатный механизм для мгновенного ресинтеза АТФ, что дает время разворачиванию более сложного гликолитического процесса. Общий мышечный запас фосфогенов может быть использован за несколько секунд высокоинтенсивной работы. Истощение запасов КрФ приводит к сильному снижению мощности работы. Это происходит по тому что гликолиз не может обеспечить достаточное количество АТФ необходимой для растрат в мышцах. В соревнованиях, в которых выполняются кратковременные работы максимально возможной интенсивности, решающую роль играет высокая мощность анаэробных алактатных источников. Крайне важна их роль в легкоатлетическом спринте, легкоатлетических прыжках, метаниях, тяжелой атлетике, плавании на 50м., а также при выполнении кратковременных, высокоинтенсивных действий в сложно-координационных видах спорта, спортивных единоборствах, спортивных играх. Анаэробные лактатные источники энергии играют решающую роль в энергообеспечении работы, которая имеет продолжительность от 30сек. до 6мин. Именно они обусловливают выносливость в беге на 400, 800 и 1500м., в плавании на 100 и 200м. Аэробный путь энергообеспечения является основным во время длительной работы: плавании на 800 и 1500м., беге на 5000 и 10000м. и марафонском беге.

При менее длительной работе, которая обеспечивается преимущественно анаэробными источниками, большое значение имеют и аэробные источники. Существенное преимущество имеет даже частичное освобождение энергии аэробным путем. Во-первых АТФ создается экономичнее – расщепляется меньше гликогена. Во-вторых для обеспечения доставки кислорода должен увеличиваться мышечный кровоток, что в свою очередь позволит продуктам распада быстрее диффундировать в кровяное русло и убираться.

Способность к длительному выполнению работы с помощью каких либо источников энерготворения, определяется размерами соответствующих субстратных фондов, и эффективностью их использования, что проявляется в скорости врабатывания, утилизации и экономичности. В отношении алактатных анаэробных источников проблема быстрого достижения максимальных показателей мощности (врабатывания) не стоит. Для лактатных анаэробных и особенно аэробных источников, время достижения максимальных показателей мощности является важным фактором ее эффективности. Параметром обозначающим эффективность энергообеспечения и выносливости спортсмена при длительной работе, является способность к утилизации функционального потенциала, которая оценивается по показателям достижения порога анаэробного обмена (ПАНО). О нарастании порога анаэробного обмена, свидетельствует увеличение концентрации лактата в крови. Привести к значительному увеличению ПАНО способны: повышение приспособительских возможностей кислородно-транспортной системы и изменение мышечной ткани под влиянием специальных тренировок.

4. Техника движенческих действий и тактика

высокой психической стойкостью, демонстрируя выдающиеся спортивные результаты, доводят себя до сверх глубоких степеней исчерпания функциональных резервов, достигая нарушений в деятельности вегетативных систем, которые граничат и часто превышают представления о возможностях человеческого Выносливость зависит от умения экономно расходовать запас энергии. Основные факторы экономичности – это совершенство техники движений и избранный тактический вариант. При выполнении даже тяжелой работы, движения должны быть свободными, не напряженными. Скованность движений вызывает излишнюю скованность мышц-антагонистов. По этому во многих видах спорта, основным признаком высшего мастерства является умение расслаблять мышцы, которые не принимают участия в выполнении основных двигательных действий. Для спортсменов очень важно научится расслаблять мышцы лица. Если спортсмен научится это делать, то и другие мышцы, не принимающие участия в работе, тоже будут менее напряжены. Благодаря этому спортсмен будет экономичнее расходовать энергию, медленнее утомляться, лучше восстанавливать силы после работы. С точки зрения экономичности, и излишние, и скованные движения, одинаково вредны. В спортивной практике бытует мнение, что стойкость двигательных навыков – это необходимое условие спортивного мастерства. Но анализ техники пловцов высокого класса, говорит о том, что даже они не могут сберечь одинаковые характеристики движений на протяжении всего периода прохождения дистанции. Основные технические характеристики, на протяжении соревнований, претерпевают значительных изменений. Что позволяет спортсменам сохранять заданную скорость, не смотря на прогрессирующие утомление.

Мышечная работа, интенсивность которой неизменна, требует наименьших энергозатрат. Поэтому спортсменам в циклических видах спорта, до недавнего времени рекомендовали поддерживать постоянную скорость от старта до финиша. Но такая техника не всегда обеспечивает наивысшую продуктивность. Она продуктивна только при мышечной работе, которая длится более 2мин.. При менее длительных упражнениях, оптимальна техника «раскладки скорости». Она характеризуется высокой стартовой скоростью, и постепенным ее снижением по мере исчерпания запасов энергосистем. Для более полного исчерпания энергетического потенциала, с первых секунд упражнения, необходимо поставить энергетические системы в наиболее тяжелые условия. По мере увеличения интенсивности мышечной работы, энергорастраты возрастают не пропорционально интенсивности, а намного больше. Поэтому увеличение интенсивности движений всегда сопровождается снижением экономичности движений.

Экономичность двигательных действий – это комплексный показатель, который обусловлен функциональной и технической экономичностью.

Функциональная экономичность обусловлена согласованностью в работе вегетативных систем и способностью продолжительное время работать в устойчивом состоянии (потребление кислорода отвечает кислородному запросу) при высоком уровне потребления кислорода. Применение метода непрерывного стандартизированного упражнения, с постепенным повышением интенсивности от умеренной до пороговой, способствует развитию функциональной экономичности.

Техническая экономичность обусловлена рациональной биомеханической структурой движений и их автоматизацией. Автоматизация движений помогает устранению лишних напряжений, а в следствие этого и уменьшению энергозатрат.

Значительное влияние на проявление выносливости имеют личностные качества спортсмена и его психическая стойкость в стрессовых ситуациях, характерных для соревновательной деятельности. Целеустремленность, настойчивость, выдержка, уверенность в своих силах, способность переносить значительные отрицательные изменения, нарастание кислородного долга, повышение концентрации молочной кислоты в крови и так далее, играют большую роль в демонстрации высоких показателей выносливости и спортивном мастерстве в целом. В наше время, в финалах больших состязаний, принимают участие спортсмены с приблизительно равной физической и технической подготовкой, придерживаются одинаковой тактики. В сложных условиях спортивной борьбы, чаще всего решающими являются именно психические способности.

Фактор генотипа (наследственности) и среды.

Общая (аэробная) выносливость в некоторой мере обусловлена влиянием наследственных факторов. Генетический фактор существенно влияет на развитие анаэробных возможностей организма. На статическую выносливость,наследственность имеет тоже большое влияние. Для динамической силовой выносливости, влияния наследственности и среды примерно одинаково. На женский организм наследственные факторы больше влияют при субмаксимальной мощности, а на мужской – при работе умеренной мощности.

18. Биоэнергетическое обеспечение мышечной деятельности. Соотношение между путями ресинтеза АТФ при выполнении физических нагрузок различного характера. Зоны относительной мощности работы. В организме постоянно поддерживается энергетический баланс поступления и расхода энергии. Жизнедеятельность организма обеспечивается энергией за счет анаэробного и аэробного катаболизма (процесса расщепления сложных компонентов до простых веществ), поступающих с пищей белков, жиров, углеводов. При окислении выделяется; а) 1г.белка, 4,1 ккал энергии, б) 1г.углеводов, 4,1 ккал, в) 1г.жира 9,3 ккал.

В процессе биологического окисления эта энергия высвобождается и используется, прежде всего, для синтеза АТФ и КрФ (энергопродукция), которая, как говорилось выше, осуществляется 2-я путями;

1.АНАЭРОБНЫМ (за счет АТФ, КрФ и глюкоза),2.АЭРОБНЫМ (за счет окисления углеводов, а затем жиров).

Аэробный путь ресинтеза АТФ (синонимы: тканевое дыхание, аэробное или окислительное фосфорилирование) – это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнмаютсядва атома водорода (2протона и 2 электрона) и по дыхательной цепи передаются на малекулярный кислород – О2, доставляемый кровью мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяются при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез 3 молекул АТФ.

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного пути ресинтеза АТФ является СО2. Возникающий при физической работе в избытке углекислый газ активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения мышц кислородом.

Максимальная мощность. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограниченыдоставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счет аэробного пути ресинтеза АТФ возвожно выполнение физических нагрузок только умеренной мощности.

Время развертывания – 3-4 мин. У хорошо тренированных спортсменок может быть около 1 мин. Такое большое время объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью составляет десятки мин. Источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Крепса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение продолжительного времени. Что является положительным фактором для гимнасток, особенно значительную роль это играет при многоборье. Однако значительным недостатком аэробного образования АТФ считается большое время развертывания (3-4 мин.) и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная худ. Гимнастике, не может быть полностью обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную млщность.

Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в миоцитах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания. Одновременно происходит совершенствование кислород – транспортной функции: повышается содержание миоглобина в мышечных клетках и гемоглобина в крови, возрастает работоспособность дыхательной и сердечно – сосудистой систем организма гимнасток.

Анаэробные пути ресинтеза АТФ (креатинфосфатный, гликолитический) являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ – аэробный не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых мин. любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок любой мощности.

В мышечных клетках всегда имеется креатинфосфат – соединеие, содержащее фосфатную группу, связанную с остатком креатина макроэргической связью.(15-20 ммоль/кг. В покое).Креатинфосфат обладает большим запасом энергии и высоким средством к АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющиеся в мышечных клетках при физической работе в результате гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина АТФ.При мышечной работе активность креатинкеназы значительно возрастает за счет активирующего действия на нее ионов кальция, концентрация которых в саркоплазме под действием нервного импульса увеличивается почти в 1000 раз. Креатинфосфат, обладая большим запасом химической энергии, является веществом непрочным. От него легко может отщепляться фосфорная кислота, в результате чего происходит циклизация остатка креатина, приводящая к образованию креатина. Образование креатина присходит без участия ферментов, спонтанно. Частично запасы креатинфосфата могут восстанавливаться и при мышечной работе умеренной мощности, при которой за счет тканевого дыхания АТФ синтезируется в таком количестве, которого хватает и на обеспечение сократительной функции миоцитов и на восполнение запасов креатинфосфата реакция может включаться многократно.Образование креатина присходит в печени с использованием 3 аминокислот: глицина, метионина и аргинина. Спортсмены для повышения в мышцах концентрации креатинфосфата используют в качестве пищевых добавок препараты глицина и метионина.

Максимальная мощность – 900-1100 кал./мин кг., что в 3 раза выше соответствующего показателя для аэробного ресинтеза.

Время развертывания – всего 1-2с. Исходных запасов АТФ в мышечных клетках хватает на обеспечение мышечной деятельности как раз в течение 1-2 с., и к моменту их исчерпания креатинфосфатный путь образования АТФ уже функционирует со своей максимальной скоростью.

Время работы с максимальной скоростьювсего лишь 8-10 с., что связанно с небольшими исходными запасами креатинфосфата в мышцах.Главными преимуществами креатинфосфатного пути образования АТФ являются очень малое время развертывания и высокая мощность, что имеет крайне важное значение для скоростно – силовых видов спорта (х. гимнастика). Главным недостатком этого способа синтеза АТФ, существенно ограничивающим его возможности, является короткое время его функционирования. Время поддержания максимальной скорости всего 8-10 с., к концу 30-й с. его скорость снижается вдвое. Анаэробная реакция окажется главным источником энергии для обеспечения кратковременных упражнений максимальной мощности, таких как прыжки, броски и т.д. в худ. гимнастике. Креатинфосфатная реакция может неоднократно включаться во время выполнения физ.нагрузок, что делает возможным быстрое повышение мощности выполняемой работы, развития ускорения во время выполнения соревновательных упражнений. 5-20 ммоль/кг. атную группу, связанную с остатком креатина макроэргической связью.(ских нагрузок любой мощности.ой путь получен